Conservation laws and null divergences

نویسنده

  • PETER J. OLVER
چکیده

1. Conservation laws For a system of partial differential equations, the existence of appropriate conservation laws is often a key ingredient in the investigation of its solutions and their properties. Conservation laws can be used in proving existence of solutions, decay and scattering properties, investigation of singularities, analysis of integrability properties of the system and so on. Representative applications, and more complete bibliographies on conservation laws, can be found in references [7], [8], [12], [19]. The more conservation laws known for a given system, the more tools available for the above investigations. Thus a complete classification of all conservation laws of a given system is of great interest. Not many physical systems have been subjected to such a complete analysis, but two examples can be found in [11] and [14]. The present paper arose from investigations ([15], [16]) into the conservation laws of the equations of elasticity. We begin by recalling the definition of a conservation law. Let x = (a;,..., z) be the independent and u = (it, ...,u) the dependent variables in the system. The notation #"« is an abbreviation for the collection of all with order partial derivatives of the u's with respect to the x'a, for which we use multi-index notation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a Noether – like conservation law theorem for one dimensional reversible cellular automata 1

Evidence and results suggesting that a Noether–like theorem for conservation laws in 1D RCA can be obtained. Unlike Noether’s theorem, the connection here is to the maximal congruences rather than the automorphisms of the local dynamics. We take the results of Takesue and Hattori (1992) on the space of additive conservation laws in one dimensional cellular automata. In reversible automata, we s...

متن کامل

On Global Conservation Laws at Null Infinity

The “standard” expressions for total energy, linear momentum and also angular momentum of asymptotically flat Bondi metrics at null infinity are also obtained from differential conservation laws on asymptotically flat backgrounds, derived from a quadratic Lagrangian density by methods currently used in classical field theory. It is thus a matter of taste and commodity to use or not to use a ref...

متن کامل

BMS invariance and the membrane paradigm

The Bondi-van der Burg-Metzner-Sachs (BMS) group is the asymptotic symmetry group of asymptotically flat spacetime. It is infinite dimensional and entails an infinite number of conservation laws. According to the black hole membrane paradigm, null infinity (in asymptotically flat spacetime) and black hole event horizons behave like fluid membranes. The fluid dynamics of the membrane is governed...

متن کامل

On Black-Scholes equation; method of Heir-equations‎, ‎nonlinear self-adjointness and conservation laws

In this paper, Heir-equations method is applied to investigate nonclassical symmetries and new solutions of the Black-Scholes equation. Nonlinear self-adjointness is proved and infinite number of conservation laws are computed by a new conservation laws theorem.

متن کامل

On Empirical Likelihood in Semiparametric Two- Sample Density Ratio Models

We consider estimation and test problems for some semiparametric two-sample density ratio models. The profile empirical likelihood (EL) poses an irregularity problem under the null hypothesis that the laws of the two samples are equal. We show that a “dual” form of the profile EL is well defined even under the null hypothesis. A statistical test, based on the dual form of the EL ratio statistic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1983